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1. INTRODUCTION

Despite the increasing popularity of speech recognition and handwriting
systems [Wu et al. 2003], typing is still one of the common activities in
human-computer interaction [John and Newell 1989]. In general, transcrip-
tion typing is a manual activity in which a person types characters using a
text input device (e.g., a keyboard) based on the textual information they per-
ceive from a display or other sources. For example, people sometimes need
to transcribe a manually written document into a computer using a standard
keyboard; pilots need to manually input some textual flight control information
into the aircraft system based on voice messages from the air traffic controller;
police officers often need to input the plate number of a skeptical vehicle via a
regular keyboard while they are driving; and cashiers have to type a UPC bar
code of a product into a system using a keypad if the bar code cannot be read
automatically by a scanner.

Transcription typing involves intricate and complex interactions of concur-
rent perceptual, cognitive, and motoric processes [Salthouse 1986a]. Numer-
ous studies in psychology [Salthouse 1983; 1984a; 1984b; 1985; 1986a; 1986b;
Salthouse and Saults 1987], human-computer interaction [Card et al. 1983;
Duric et al. 2002; Fish et al. 1997; John and Newell 1989; Pearson and van
Schaik 2003], and neural science [Gordon et al. 1998] have been conducted
to quantify transcription typing behavior and explore its underlying mecha-
nisms. Several decades of research have identified numerous robust transcrip-
tion typing phenomena including concurrent tasks, typing errors, visuomotor
coordination, and skill acquisition. Salthouse [1986a] reviewed a majority of
the experimental studies and summarized the findings as a list of 29 tran-
scription typing phenomena (referred to as the Salthouse phenomena in this
article). The availability of a wide range of experimental data and an extensive
list of phenomena makes transcription typing one of the best candidate tasks
to test theories and models of human performance. Modeling this rich and co-
herent set of behavior data and phenomena with the same set of assumptions
and mechanisms is an important challenge to any theory or model of human
performance. In practice, many human-computer interaction tasks involve the
interaction of the perceptual, cognitive, and motoric processes. Once a model
can generate the interaction of these three processes and account for a wide
range of phenomena in transcription typing, it can serve as a step towards
modeling other tasks in human-computer interaction.

Inspired by Allen Newell’s dream of unified theories of cognition (UTC)
[Newell 1973], researchers have developed several important UTCs or har-
bingers to UTCs, including the Model Human Processor (MHP) and the GOMS
family of models [Card et al. 1983; John and Kieras 1996a; 1996b; Olson and
Olson 1990], ACT-R [Anderson and Lebiere 1998], SOAR [Newell 1990; Laird
et al. 1987], CAPS [Just and Carpenter 1992], and EPIC [Meyer and Kieras
1997a; 1997b]. Newell [1990] regarded transcription typing as one of the major
tasks to be modeled by cognitive architectures. Although these architectures
have been successfully applied to modeling a variety of tasks, it seems that the
only model that covers a subset of the 34 transcription typing phenomena is
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TYPIST (an acronym for TheorY of Performance In Skilled Typing) developed
by John [1988; 1996] (see Section 1.2 for its description).

In this article, we describe the application of a queuing network-based the-
ory of cognition [Liu 1996; 1997; Liu et al. 2006] in modeling transcription
typing. Our model not only successfully accounts for a wide range of tran-
scription typing phenomena, but can be used to simulate and analyze typing
behavior and interfaces.

This article is organized as follows. In the remaining part of this section, we
first summarize the rich list of phenomena in transcription typing, followed by
a summary of existing models. In the second section, we describe the queuing
network model in general and its application in typing modeling in particular.
In the third section, we describe the mechanisms and results of simulating
transcription typing with the queuing network model. In the fourth section,
we illustrate some of the potential applications of the model in HCI interface
design, and the implications of the research are further discussed in the final
section.

1.1 Phenomena in Transcription Typing

After Salthouse’s [1986a] review of the 29 behavioral phenomena in transcrip-
tion typing, additional phenomena have been identified and summarized. John
[1988] summarized 2 behavioral phenomena discovered by other researchers
[Gentner 1983; John 1988; Salthouse and Saults 1987]. In addition, three eye-
movement phenomena and one neural imaging pattern in transcription typing
have been discovered [Inhoff et al. 1992c; Rayner 1998]. These 34 phenomena
are introduced in Table I as six categories [Salthouse 1986a] including basic
phenomena, units of typing, typing error, skill effects, and eye-movement phe-
nomena.

1.1.1 Basic Phenomena. The following 12 behavioral phenomena are cate-
gorized as the basic phenomena in transcription typing by Salthouse [1986a]
and they are related to the major factors affecting the interkey time, compar-
ison of transcription typing with other tasks, and concurrent tasks in typing.
Interkey time refers to the interval between two adjacent keystrokes, and is
regarded as the basic measurement of human performance in transcription

typing.

—Phenomenon 1. Typing is faster than choice reaction time. Salthouse
[1984a] reported that the median interkey time for skilled typists was
177ms, while the typical reaction time for a two-choice reaction time task
is about 300-400ms. Based on Hick’s law on choice reaction time, a typical
binary choice reaction time is 150+170x1log2(2)=320ms [Schmidt 1988].

—Phenomenon 2. Typing is slower than reading. Salthouse [1984a] found
that the reading speed of the typists in his experiments was 253 words-per-
minute (wpm), but their typing speed was only 58 words-per-minute.

—Phenomenon 3. Typing skill and comprehension are independent. In-
volvement of comprehension is optional while typing [Salthouse 1986a].
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Table I. Phenomena in Transcription Typing

Category Phenomena Category Phenomena

1) Basic 1. Typing is faster than choice reaction time | 3) Errors 18. 40%-70% of typing errors are detected
2. Typing is slower than reading without reference to the typed text
3. Typing skill and comprehension are 19. Many substitution errors involve adjacent
independent keys
2 4. Typing rate is independent of word 20. Intrusion error mostly short interkey time
order ! 21. Omission error mostly long interkey time
5. Typing speed is slower with random 22. Transposition error mostly occur cross-
character order hand
6. Rate of typing is severely impaired by 4) Skill Effects 23. Two-finger digram improves faster than
restricted preview window one-finger digram
7. Alternate-hand keystroke are faster than 2 24. Repetitive tapping rate increases with
the same-hand keystroke skill 1
2 8. More frequent character pairs are typed 25. Variability decrease with skill
more quickly ! 26. Eye-hand span increases with skill
9. Interkey time is independent of word 27. Replacement span increases with skill
length 28. Copy span is depend on skill
10. The first keystroke in a word is slower 29. Stopping span increases with skill
than subsequent keystrokes 31. Learning curve follows power law of
12. A concurrent task does not affect typing practice 1 2

2) Units of Typing | 13. Copy span is 7-40 characters 5) Eye Movements | 132. Gaze duration per character decreased

14. Stopping span is one or two characters
15. Eye-hand span is 3-8 characters

16. Eye-hand is smaller for meaningless
material than for then normal text

17. Replacement span is about 3 characters
30. Detection span is about 8 characters !

with enlarging of preview window size !

133. Mean saccade size is about 4 characters !
134. Fixation duration is around 400 ms !

T Phenomenon beyond Salthouse’s review [1986al.
2 Qualitative phenomena: existing experimental studies only reported the significance levels of comparisons between different conditions
rather than detailed values of dependent variables.

9

NI °A PUB NAA "D



Queuing Network Modeling of Transcription Typing . 6:5

Nonsignificant correlations were reported between net typing speed and
comprehension scores obtained in typing [Salthouse 1984a].

—Phenomenon 4. The rate of typing is nearly the same for random words as it
is for meaningful text.

—Phenomenon 5. The rate of typing is slowed as the material approaches
random. The difference between phenomena 4 and 5 is that the former refers
the order of the words being randomized, while the latter refers to the order
of characters within each word being randomized. It was found that the
average interkey time in typing increased to 454ms when subjects are typing
materials composed of words with random characters [Hershman and Hillix
1965].

—Phenomenon 6. The rate of typing is severely impaired by a restricted pre-
view of the material to be typed. Decreasing the number of characters to
be typed in the restricted preview increased the interkey time and severely
impaired the typing rate.

—Phenomenon 7. Alternate-hand keystrokes are faster than the same-hand
keystrokes (called the alternate-hand advantage). Successive keystrokes
from fingers on alternate hands are 30-60ms faster than successive key-
strokes from fingers on the same hand.

—Phenomenon 8. Digram (letter pairs) that occur more frequently in nor-
mal language are typed faster than less frequent digram (called the digram
frequency effect). The significant difference in typing speed between the
low-frequency digrams and the high-frequency digrams has been reported
in numerous studies [Salthouse 1984a; 1984Db].

—Phenomenon 9. Interkey time is independent of word length. Salthouse
[1986a] summarized several experiments in transcription typing and found
no significant difference between the interkey time in typing long words and
short words.

—Phenomenon 10. The first keystroke in a word is slower than the subsequent
keystrokes (called the word initiation effect). Salthouse [1986a] reviewed 5
researchers’ experiments and found that the interval before the first key-
stroke in a word is approximately 20% (45ms) [Salthouse 1984a] longer than
that between the later keystrokes in the word.

—Phenomenon 11. The time for a keystroke is dependent on the specific con-
text in which the character appears, especially for the topography of the
keyboard (called the context phenomenon). The specific context here refers
to the character ahead of and behind the target character. The context phe-
nomenon is a combination of the alternate-hand advantage (phenomenon 7),
the digram-frequency effect (phenomenon 8), the word-initiation effect (phe-
nomenon 10), and, more specifically, the effect of topography of the keyboard
in interacting with prior and subsequent keystrokes. For example, in typ-
ing the key sequence “r-e”, the close proximity of the two keys “r” and “e”
in the same row on a standard QWERTY keyboard allows the middle fin-
ger on the left hand to move toward the target “e” while the index finger on
the left hand is typing character “r”, which may save half of the movement
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distance of the middle finger from the home position “d” to the target
position “e”.

—Phenomenon 12. A concurrent task does not affect typing performance. For
highly skilled typists, a concurrent activity can be performed with little or
no effect on the speed or accuracy of typing. Salthouse and Saults [1987]
added a secondary task in parallel with the primary task of transcription
typing: typists were asked to press a foot pedal as soon as they heard a tone
signal [Salthouse and Saults 1987]. They found that the interkey time in
this concurrent task situation was 185ms, which was not significantly longer
than that in a single task situation (transcription typing only, interkey time
181ms).

1.1.2 Units of Typing. This group contains six phenomena related to the
various spans and units of typing (defined later), five of which appeared on the
original list of Salthouse [1986a] and the last one was identified after the list
was published [Salthouse and Saults 1987]. It was regarded as one of the post
29 phenomena (phenomenon 30) by John [1996].

—Phenomenon 13. Copying span is 2-8 words or 7-40 characters for all typ-
ists. Copying span is the amount of characters that can be typed accurately
after a single inspection of the copy [Salthouse 1986a]. Without requiring
the typists to commit the material to be typed to memory before typing or by
randomizing the order of the words, Salthouse [1985] measured the copying
span as the number of characters typed correctly after an unexpected disap-
pearance of the copy and found that the copying span in normal transcription
typing situation was 14.6 characters on average for the skilled typist.

—Phenomenon 14. Stopping span is one or two characters. Stopping span
is the number of keystrokes typed after the subjects were requested to ter-
minate their typing immediately after perceiving a stop signal. Using an
auditory stop typing signal, Logan [1982] found that the stopping span was
2.16 characters when the typing materials were sentences.

—Phenomenon 15. Eye-hand span is 3-8 characters. Eye-hand span is defined
as the number of characters intervening between the character whose key
is currently being pressed and the character receiving the attention of the
eyes [Salthouse 1986a]. Butsch [1932] found that the eye-hand span was
5 characters. The result is consistent with the other studies reviewed by
Salthouse [1986a] who found that the range of eye-hand span is between 3
to 8 characters.

—Phenomenon 16. Eye-hand span is smaller for unfamiliar or meaningless
material than for normal texts. When typists were typing a text and each
word in it was composed of randomly ordered letters, Salthouse [1984a]
found that their eye-hand span was only 1.75 characters.

—Phenomenon 17. Replacement span is about 3 characters. The subjects in
Salthouse and Saults [1987] were asked to type exactly what appeared on
the screen where one of the characters to be typed could be suddenly re-
placed by another character. Replacement span is defined as the keystroke-
replacement interval corresponding to a 0.5 probability of typing the second
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(replaced, i.e., newly appeared) character. The replacement span was 2.9
characters on average [Salthouse 1986al].

—Phenomenon 30. Detection span is about 8 characters. In the experiment of
Salthouse and Saults [1987], subjects were asked to press the “/” key when
they noticed a capital character on the line. The detection span is defined as
the number of characters intervening between the capital character and the
character currently being typed. The observed mean detection span was 8
characters approximately.

1.1.3 Errorsin Transcription Typing. Salthouse [1986a] classified the vast
majority of typing errors into four categories: substitution (e.g., work for word),
intrusion (e.g., worrd for word), omission (e.g., wrd for word) and transposition
(e.g., wrod for word). He summarized five major typing error phenomena re-
lated to these four categories of errors.

—Phenomenon 18. 40%-70% of typing errors are detected without reference to
the typed text. After reviewing three studies in transcription typing, Salt-
house [1986a] summarized that about 40%-70% of typing errors are detected
without reference to the typed copy. In his review, Salthouse suggested that
typing errors include: (a) undetected errors which can be postulated to orig-
inate at earlier levels of processing (errors mainly caused by failure to pre-
serve sequences in the sensory and working memory) and (b) detected errors
without reference to the typed copy which probably stem from later stages
of processing (hand and finger movement) that are handled by the efferent
response feedback.

—Phenomenon 19. Many substitution errors involve adjacent keys. Exper-
imental results from highly skilled typists indicated that 30.1% of substi-
tution errors involved horizontally or vertically adjacent keys [Salthouse
1986al.

—Phenomenon 20. Many intrusion errors involve extremely short interkey
time in the immediate vicinity of the error. Nearly 38% of the intrusion
error keystrokes had ratios (interkey time of an error keystroke divided by
that of the regular interkey time) less than 0.1 of the average interkey time
[Salthouse 1986a] and over 54% of intrusion errors involved an adjacent key
in the same row or the same column.

—Phenomenon 21. Many omission errors are followed by a keystroke interval
approximately twice the overall median. Salthouse [1986a] summarized this
phenomenon based on Shaffer’s study [1975] which found that the interkey
time of the keystroke right after the omission error was 1.54 times longer
than that of the average interkey time.

—Phenomenon 22. Transposition errors mostly occur cross-hand. Salthouse
[1986a] reported that 80% of the transposition errors were typed by the op-
posite hands.

1.1.4 Skill Effects in Transcription Typing. Salthouse [1986a] summarized
seven phenomena related to the improvement of typing performance through
practice. In addition, Gentner [1983] found another related phenomenon—the
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interkey time of transcription typing decreases with practice following the
power law, which is listed in the following as one of the post 29 phenomena
(phenomenon 31).

—Phenomenon 23. Digrams typed with two hands (two-hand digrams) or with
two different fingers of the same hand (two-finger digrams) exhibit greater
changes with the skill level of typists than do digrams typed with one finger.
Salthouse [1984a] found that the slope of the regression equations relating
the digram interval to typing speed of two-hand digrams (-2.08) and two-
finger digrams (-2.38) were greater than that of one-finger digrams (-1.38 on
average).

—Phenomenon 24. Repetitive tapping rate increases with the skill level of
typists. Salthouse [1984a] found a significant positive correlation between
the tapping rate and the net typing speed (p <.01).

—Phenomenon 25. The variability of interkey time decreases with the skill
level of typists. Salthouse [1984a] found that two types of variability of
the interkey time (75% quartile-25% quartile) decreased with an increase in
typists’ skill level: (a) Inter-keystroke variability, which refers to the distri-
bution of interkey time across different keystrokes and different contexts,
correlated -.69 with the net typing speed; (b) Intra-keystroke variability,
which represents the distribution of interkey time for the same keystroke
in the same context but across multiple repetitions, correlated -.71 with the
net typing speed.

—Phenomenon 26. Eye-hand span is larger with increased skill level of typists.
In the Salthouse [1984b] studies, the correlation between the eye-hand span
and net words-per-minute across 74 typists was significant with p <.01.
There was an increase of between 0.5 and 1.2 characters with every 20 net
words-per-minute increase in typing skill [Salthouse 1985; Salthouse and
Saults 1987].

—Phenomenon 27. Replacement span is larger among more skilled typists.
Salthouse’s studies [1985] found that the correlation between net words per
minute and the replacement span was 0.80 (p <.01).

—Phenomenon 28. Copying span is moderately related to the skill level of
typists. The correlation coefficient between copying span and net words-per-
minute ranges from 0.35 to 0.57 [however, the correlation is not significant,
p >.05 Salthouse [1985].

—Phenomenon 29. Fast typists have larger stopping spans than slow typists.
The experimental results of phenomenon 29 are not conclusive. Salthouse
and Saults [1987] reported a correlation of 0.57 between the typing speed
and the stopping span. However, another study of Salthouse [1985] did not
find any significant correlation between these two variables (p >.05).

—Phenomenon 31. Interkey time of transcription typing decreases with prac-
tice following the power law of practice [Gentner 1983]. Typing speed of an
unskilled typist can be improved to that of a skilled typist. According to the
learning curve of the single typist in the study of Gentner, the improvement
of interkey time follows the power law of practice.
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1.1.5 Eye-Movement Phenomena. Although not included in the Salthouse
list of phenomena, eye movements are one of the most important aspects of hu-
man behavior in eye-hand coordination tasks including transcription typing.
Among the various variables in eye movements data, fixation duration (the
length of time for one fixation of the eye movements), saccade size (the number
of characters or the degrees of visual angle between two fixation points) and
gaze duration-per-character (equals fixation duration divided by saccade size)
are the major parameters in determining eye movements in transcription typ-
ing [Inhoff et al. 1992a; 1992b]. Three recently discovered eye movements
phenomena related to transcription typing are listed here.

—Phenomenon 32. Gaze duration-per-character decreases with increased pre-
view window size. Inhoff et al. [1992a; 1992b] found that the gaze duration-
per-character decreased from 280ms to 182ms when the preview window size
increased from 1 to 11 characters.

—Phenomenon 33. The mean saccade size is about 4 characters [Rayner 1998].

—Phenomenon 34. The mean fixation duration in transcription typing is
400ms [Rayner 1998].

1.2 Existing Models of Transcription Typing

Several quantitative and qualitative models have been proposed to analyze
transcription typing behavior. The quantitative models includes a central con-
trol model [Terzuolo and Viviani 1979; 1980], a composite model [Gentner
1987], an activation-trigger-schema model (Rumelhart and Norman, 1982),
and a PERT-network based model [John 1988; 1996]. The model proposed by
Salthouse [1984a; 1986a] is a qualitative model.

Terzuolo and Viviani [1979; 1980] proposed a central control model of tim-
ing in transcription typing and they suggest that interkey time is generated in
parallel from centrally stored, word-specific timing patterns. Gentner [1983]
provided experimental evidence against this central model and proposed
a composite model composed of both central and peripheral mechanisms
[Gentner 1987].

Rumelhart and Norman [1982] proposed a model based on an activation-
trigger-schema system in which a hierarchical structure of schemata directs
the selections of the characters to be typed and controls the hand and finger
movements by a cooperative algorithm. The model reproduces several major
phenomena of typing including the interkey time and the patterns of transpo-
sition errors found in skilled typists.

John [1988; 1996] proposed a model called TYPIST which uses the Project
Evaluation and Research Technique (PERT) method of scheduling to quantify
the parallel activities of typing performed by the three perceptual, cognitive,
and motor processors in the Model Human Processor (MHP) [Card et al. 1983].
TYPIST is by far the most extensive quantitative model of transcription typing
and it covers 19 of the 34 phenomena in transcription typing, including 17
phenomena reviewed by Salthouse [1986a; 1986b] and 2 additional phenomena
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found by Gentner [1983] and Salthouse and Saults [1987] (phenomena 31 and
30 reviewed earlier).

Salthouse [1984a; 1986a] proposed a qualitative model of transcription typ-
ing which consists of 4 components: input (convert text into chunks), pars-
ing (decompose chunks into ordinal strings of characters), translation (convert
characters into movement specifications) and execution (implement movement
in ballistic fashion). It is a synthesis of many previous works and provides a
basic conceptual framework in transcription typing. However, because it is a
qualitative model, it does not simulate or generate typing behavior or make
quantitative predictions.

In the following section, we describe a queuing network model of human
performance and its application in modeling transcription typing. The model
captures the nature of transcription typing as a parallel process. The typist
looks ahead at the words on a display while executing the motor responses for
the current characters [John and Newell 1989]. The model analyzes time and
error simultaneously with the same underlying cognitive structure and gener-
ates typing behavior as observable behavioral manifestations of the underlying
cognitive queuing network at work.

2. QUEUING NETWORK MODELING OF HUMAN PERFORMANCE

Along the line of research on developing unified theories of cognition advocated
by Newell [1990], we have been making steady progress in developing a queu-
ing network architecture for human performance modeling [Liu 1996; 1997,
Liu et al. 2006]. Mathematical models based on queuing networks have suc-
cessfully integrated a large number of mathematical models in response time
[Liu 1996] and in multitask performance [Liu 1997] as special cases of queuing
networks. As a computational model, we have established a bridge between the
mathematical models of queuing networks and the symbolic models of cogni-
tion with our queuing network architecture called the Queuing Network-Model
Human Processor (QN-MHP) [Liu et al. 2006]. The QN-MHP represents its
overall architecture as a queuing network, a major branch of mathematics
and operations research, thus allowing comprehensive mathematical model-
ing. Further, each of the QN-MHP servers is capable of performing procedure
logic functions, allowing it to generate detailed task actions and simulate real-
time behavior like symbolic models such as ACT-R and EPIC. For multitask
performance modeling, a unique characteristic of the QN-MHP is its ability
to model concurrent activities without the need to either interleave the pro-
duction rules of concurrent tasks into a serial program (in ACT-R) [Anderson
et al. 2004; Salvucci 2005] or for executive process(es) to interactively control
(lock/unlock) the task processes (in EPIC). The model has been successfully
applied to model a variety of tasks including simple and choice reaction time
[Feyen and Liu 2001], visual search [Lim and Liu 2004], visual manual track-
ing [Wu and Liu 2006a], psychological refractory period (PRP) [Wu and Liu
2004], and driver workload [Wu and Liu 2006b; 2006¢c]. For a detailed de-
scription of the rationale, assumptions, structure, and implementation of the
QN-MHP and how to use it in multitask modeling, see Liu et al. [2006].
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(&) Perceptual (b) Cognitive () Motor

Subnetwork Subnetwork Subnetwork
Perceptual Subnetwork Cognitive Subnetwork Motor Subnetwork
1. Common visual processing A. Visuospatial sketchpad V. Sensorimotor integration
2. Visual recognition B. Phonological loop W. Motor program retrieval
3. Visual location C. Central executive X. Feedback
4. Visual recognition and D. Long-term procedural memory information collection
location integration E. Performance monitor Y. Motor program assembling
5. Common auditory processing F. Complex cognitive function and error detecting
6. Auditory recognition G. Goal initiation Z. Sending information to body
7. Auditory location H. Long-term declarative & parts
8. Auditory recognition and spatial memory 21-25: Body parts: eye, mouth,
location integration left hand, right hand, foot

Fig. 1. The general structure of the queuing network model (QN-MHP 2.0). Further developed
from Liu et al. [2006].

In this section, we describe four new developments of the QN-MHP that
are beyond the first version (called QN-MHP 1.0, for ease of description)
reported in Liu et al. [2006]: the auditory subnetwork in the perceptual
subnetwork, the phonological loop and the long-term memory servers in the
cognitive subnetwork, refinements of the motor network, and three learn-
ing mechanisms. These developments are important for a broader coverage of
human performance since they are well-recognized components of human per-
formance in the literature. As described in the following, these developments
are developed and implemented context-free, independent of any particular
task, and then applied to the modeling of the wide range of phenomena in
transcription typing.

2.1 Enhancement of the Perceptual Subnetwork

The general structure of the QN-MHP is shown in Figure 1, and consists of a
perceptual, a cognitive, and a motor subnetwork. The perceptual subnetwork
includes a visual and an auditory subnetwork and each of them is composed
of four servers. The visual subnetwork was implemented in the QN-MHP 1.0
and discussed in Liu et al. [2006]. The auditory subnetwork (server 5-8), how-
ever, was not developed in the original version; thus none of the tasks modeled
with QN-MHP 1.0 included auditory information processing. Clearly, many
real-world tasks involve auditory processing such as using a telephone or
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listening to voice instructions. Several of the transcription typing phenom-
ena listed earlier also involve auditory information processing. To cover these
types of tasks, one of the enhancements of the queuing network model is the
development and implementation of the auditory subnetwork.

The auditory subnetwork is developed in the queuing network model as
follows. The auditory stimuli (represented by numeric code) are converted
to auditory information (represented by entities) in the middle and inner ear
(represented by server 5) and then transmitted to the parallel auditory path-
ways including the neuron pathway from the ventral cochlear nucleus to the
superior olivary complex (server 7) and the neural pathway from the dorsal
and ventral cochlear nuclei to the inferior colliculus (server 6) where loca-
tion pattern and other aspects of the sound are processed Bear et al. [2001].
After that, the auditory information in the auditory pathways is integrated
at the primary auditory cortex and the planum temporale (server 8) [Mus-
tovic et al. 2003]. The primary auditory cortex and the planum temporale
as well as the auditor pathways (server 6-8), also serve as a sensory memory
storage place for the auditory information [Mustovic et al. 2003]. Further,
based on the mechanism of working memory of Baddeley [1992], the audi-
tory information is transmitted to the left-hemisphere posterior parietal cortex
(server B) as well as the right-hemisphere posterior parietal cortex (server A)
through the neural pathways between the primary auditory cortex and the pos-
terior parietal cortex as well as the angular and supramarginal gyri which are
regarded as multimodal areas responding to visual, auditory, and somatosen-
sory stimuli [Faw 2003]. Information processed in the perceptual subnet-
work decays following the decay rate of sensory memory in MHP [Card et al.
1983]; the half-life of visual and auditory information is 200ms and 1500ms,
respectively.

2.2 Enhancement of the Cognitive Subnetwork

2.2.1 Phonological Loop. The phonological loop is developed on the basis
of Baddeley’s model of working memory [Baddeley 1992] and related neuro-
science findings. In Baddeley’s model, the working memory system includes
a visuospatial sketchpad, a phonological loop, and a central executor. The vi-
suospatial sketchpad (server A) and central executive (server C) were already
developed in QN-MHP 1.0. Server B is developed and implemented in QN-
MHP 2.0 to represent the functions of two particular regions of the phonolog-
ical loop in the brain: (1) the left-hemisphere posterior parietal cortex which
stores phonological information in working memory; (2) the Broca’s area (BA)
44 and 45 which are important for encoding visual information to phonolog-
ical representation (e.g., forming phonological chunks as meaningful units)
[Smith and Jonides 1998], articulating speech and subvocal rehearsal. The
left-hemisphere posterior parietal cortex as well as BA 44 and 45 (all of them
represented by server B) are densely connected with the DLPFC (dorsal lat-
eral prefrontal cortex) and the ACC (anterior cingulate cortex) (server C) as
well as the basal ganglia (server W) [Bear et al. 2001]. Information processed
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in server B decays following the decay rate of working memory in MHP [Card
et al. 1983].

2.2.2 The Long-Term Memory Servers. QN-MHP 2.0 contains two types
of long-term memory based on neuroscience studies (a) declarative (facts and
events) and spatial memory and (b) nondeclarative memory (procedural mem-
ory and motor program) [Bear et al. 2001]. As the first step in model devel-
opment, QN-MHP 1.0 includes only one type of long-term memory, which is
implemented as a database as an input to the model (model retrieves certain
information in this database based on different tasks) rather than an explicit
server of the QN-MHP architecture. To be consistent with existing psycho-
logical findings on the structure of long-term memory and to model a wider
range of behavior, QN-MHP 2.0 explicitly includes the two types of long-term
memory as two servers in the cognitive subnetwork. This development is also
consistent with the use of two long-term memory systems in ACT-R.

In Figure 1, server H represents long-term declarative and spatial mem-
ory and server D represents long-term nondeclarative memory (procedural
memory and motor program). This development is based on the neuroscience
findings that the medial temporal lobe including the hippocampus and the di-
encephalons (server H) is the storage place for declarative and spatial mem-
ory. The medial temporal lobe connects with the IPS (intraparietal sulcus)
(included in server F) and the orbitofrontal region (server G) [Bear et al. 2001,
Cook and Woollacott 1995; Kaufer and Lewis 1999]. Long-term declarative and
spatial memory (sever H) stores long-term spatial information and production
rules related to decision making and problem solving. The striatal and cerebel-
lar systems (server D) are related to the procedural long-term memory which
connects with ACC (server C) and basal ganglia (server W) [Bear et al. 2001].
In QN-MHP, the capacity of the two types of long-term memories is assumed
to be infinite. Procedural long-term memory (server D) stores all of the steps
in task procedures and motor programs related to motor execution.

2.3 Enhancement of the Motor Subnetwork

The major part of the motor subnetwork in the QN-MHP 2.0 is the same as the
QN-MHP 1.0. There are several major improvements in the QN-MHP 2.0.

First, functions of server Y (representing the SMA and the pre-SMA) are
enhanced since neuroscience has found the SMA not only assembles the motor
programs, which is covered by QN-MHP 1.0, but also processes tactile informa-
tion from the somotosensory area (S1) (server X) to detect errors [Gordon and
Soechting 1995; Sadato et al. 1997] and coordinate and couple the bimanual
coordination [Steyvers et al. 2003].

Second, in the QN-MHP 1.0, one server (server Z) represents all of the ac-
tuators and no server in the motor subnetwork represents the primary motor
cortex. In modeling typing as well as other bimanual tasks, the primary motor
cortex plays an important role in sending input information to different body
parts including addressing spinal motorneourons [Bear et al. 2001]. Therefore,
in QN-MHP 2.0, server Z is used to represent the primary motor cortex, while

ACM Transactions on Computer-Human Interaction, Vol. 15, No. 1, Article 6, Pub. date: May 2008.



6: 14 . C.WuandY. Liu

servers 21-25 represent the different body parts (e.g., eye, mouth, right and
left hands and feet).

Third, hand and foot servers are newly built servers in the QN-MHP 2.0.
Each of these servers can process information in a serial manner. The move-
ment execution time and force in these servers are quantified based on previ-
ous research in human factors and ergonomics (see Appendix 3). In addition,
entities in the motor subnetwork decay following the decay rate of motoric in-
formation with half-life equaling 1000ms on average [Ito 1991].

2.4 Learning Mechanisms in the Queuing Network

Another important improvement of the queuing network model is its develop-
ment and implementation of three learning mechanisms, none of which were
included in QN-MHP 1.0. At network level, the probability that entities take
different routes may change in the learning process, representing the change
of connection strengths and rewiring of neural pathways in the brain network
[Van Mier et al. 1998; Petersen et al. 1998]. At the individual servers, level,
server processing time decreases and information processing in servers can
also be optimized via trial-and-error, reflecting the improvement of informa-
tion processing efficiency of individual brain regions via a learning process
[Braus 2004; Boettiger and D’Esposito 2005].

2.4.1 Change of Routing Probability. It is well recognized that the hu-
man brain is not only a network of brain regions, but also a system that is
able to change itself dynamically in the process of development and learning
[Chklovskii et al. 2004; Habib 2003]. On the one hand, the “brain traffic” con-
cept in neuroscience suggests that information flow represented by spike trains
in the brain exhibit features of traffic flow in the network; spike trains (repre-
sented by entities in the model) form the information flow among brain regions.
Depending on different tasks and learning stages, these information flows can
sometimes be processed immediately by the brain regions (servers), but some-
times they have to be maintained in certain regions to wait for the previous
flow to be processed [Bullock 1968; Eagleman et al. 2004; Smith and Jonides
1998; Taylor et al. 2000; Braus 2004; Chklovskii et al. 2004; Habib 2003]. On
the other hand, different brain areas are activated during the visual-motor
learning process [Van Mier et al. 1998; Petersen et al. 1998; Aizawa et al. 1991].
This plasticity aspect of the human brain concerns the change of synaptic con-
nection strength between neurons and rewiring among neural pathways; spike
trains change from one neural pathway to anther one with stronger synaptic
connection strength and higher efficiency in information processing. This rapid
regulation is related to a brain derived neurotrophic factor (BDNF) regarded
as a signal of synaptic plasticity in adults [Black 1999; Braus 2004], and Black
[1999] proposed a model explaining the role of BDNF in its regulation of the
synaptic plasticity.

Equation (1) is developed based on Black’s model [1999] and the brain traf-
fic concept mentioned previously (see Appendix 1 for its derivation), where
routing probability (P;) stands for the probability that spike trains (repre-
sented by entities) pass through a certain neural pathway (route i) in a total
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of U multiple routes. Sojourn time (S;) is defined as the sum of waiting
time (W;) and processing time (7;) of these spike trains (entities) along that
neural pathway.
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2.4.2 Reduction of Server Processing Time. Besides the change of con-
nection strengths and rewiring of pathways at the network level, individual
brain regions also exhibit improvements in information processing speed in the
learning process [Braus 2004]. Moreover, some research has demonstrated that
exponential functions characterize the learning processes in memory search,
motor learning, visual search, and mathematic operation tasks better than
the power law [Heathcote et al. 2000]. Accordingly, exponential functions are
employed in the queuing network model to characterize the learning process
in the individual servers (see Equation (2)) with the exception of the six per-
ceptual servers (servers 1-3 and 5-7) that are only related to neural signal
transmissions which are relatively stable in the learning process.

Ti = Ai + BiExp(—(XiM) (2)

In Equation (2), T;stands for the processing time in each server; A; represents
the expected minimal processing time (77) at server i after intensive practice
[Feyen 2002]. B; is the change in the expected processing time from the be-
ginning to the end of practice; o; represents the learning rate of server i (e.g.,
a;= .001 [Heathcote et al. 2000]); and N; is the number of entities processed
by server i; for example, N; in servers A, B, C, and F refers to the number of
chunks the server processed, while N; in server W refers to the number of re-
trievals of a certain motor program in general (e.g., in transcription typing, N;
in server W refers to the number of retrievals for a certain digram).

2.4.3 Optimization of Information Processing via Trial-And-Error. Nu-
merous studies have found that mammals including human beings optimize
their movement and behavior via the learning process [Alexander 1993; Borgh-
ese and Calvi 2003; Laureys et al. 2001]. For example, mammals optimize the
movement of their legs to run quickly with the smallest amount of energy.
Among these optimization processes, trial-and-error is one of the major for-
mats of learning [Boettiger and D’Esposito 2005; Bustillos and De Oliveira
2004; Ghilardi et al. 2000; Sakai et al. 1998]. Mammals may try many actions
until one of them satisfies their goal. For human beings, trial-and-error is also
an important aspect of motor learning [Ghilardi et al. 2000] and optimization
in information processing in working memory [Asari et al. 2005; Baltes et al.
1999; Bor et al. 2004; Genovesio et al. 2005; Krampe et al. 2003; Schmuck and
WobkenBlachnik 1996], and it involves the activation of the frontal cortex (rep-
resented by server A, B, C) and the presupplementary motor area (pre-SMA,
represented by server Y) [Boettiger and D’Esposito 2005; Nakamura et al.
1998]. Typically, this trial-and-error learning is simulated via Monte Carlo
simulation [Bustillos and De Oliveira 2004] whose nature is a trial-and-error
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process of using random numbers to reach a solution. In general, this Monte
Carlo learning mechanism can be implemented in any of the QN-MHP servers,
but for transcription typing modeling, it is only implemented in server B and
server Y since they are most relevant to learning of motor skill and keyboard
characteristics.

3. SIMULATING TRANSCRIPTION TYPING WITH QN-MHP: MECHANISMS
AND RESULTS

Simulation of any human-machine interaction task requires the specification
of three components: a human model, the machine or the environment with
which the human model interacts, and the task input to the human model.
These three components correspond to the QN-MHP, a typewriter, and a dis-
play presenting the text to be typed, respectively, in the context of the tran-
scription typing task.

The general human model of QN-MHP is described in the previous section.
To possess the basic knowledge of typing requires the QN-MHP to have the cor-
responding procedure knowledge rules stored in its long-term procedure mem-
ory server. Thus, following the general method of QN-MHP simulation [Liu
et al. 2006], a 5-step NGOMSL-style task description of transcription typing
is developed (see Table II) and stored in server D as the long-term procedure
knowledge of typing in the model (also called operator or command entity).
Step 1 (watch for < > on < >) defines how the model samples visual infor-
mation (e.g., the characters) on a certain user interface (e.g., the display) via
the visual perceptual subnetwork following a queuing process. The number of
entities leaving server A or B at one time, forming a chunk (a meaningful infor-
mation unit, chunk size=x), determines the number of entities sampled by the
servers in the visual perceptual subnetwork at one time. After the stimuli are
retained in the working memory (step 2), step 3 defines how the model presses
a certain control device on a user interface (e.g., keys on a QWERTY keyboard)
with defined body parts (e.g., hands). Finally, when the model reaches the end
of the text (step 4), it stops typing (step 5). All of these steps or operators have
two properties. First, they are defined in a task-independent manner; task-
specific information is treated as their parameters. Second, even though these
steps are listed in a serial manner in the NGOMSL-style task description, they
can run in parallel in the model because of the parallel processing property of
the queuing network. For example, the perceptual subnetwork is able to watch
for new stimuli (step 1), while the motor subnetwork is still executing the sim-
ulated actions (step 3).

To define a typewriter with which the QN-MHP interacts, a software module
called m-hQWERTY was implemented to represent a QWERTY keyboard, the
most commonly used keyboard in the English-speaking world. This module
defines the size and location of each key and the distance between each pair
of the keys on the keyboard. We selected the same text source employed in
Salthouse’s study [1984a; 1984b; 1987], the Nelson-Denny Reading Test. A
module in the simulation software (Promodel®) is designed to represent the
display containing the position and content of the text characters. In each run,
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Table II. NGOMSL-Style Task Description of Transcription Typing Task
GOAL: Do transcription typing task

Method for GOAL: Do transcription typing task

Step 1. Watch for <the characters> on <the display>

Step 2. Retain <the characters >

Step 3. Press <keys> on <a QWERTY keyboard> with <hands>

Step 4. Decide: If <the characters> is <the end of text>, then move to step 5
Else move to step 1

Step 5. Cease //task completed

Method for GOAL: Press <keys> on <a QWERTY keyboard> with <hands>
Step 1. Decide: If location of <keys> in memory, then move to step 3

Else move to step 2
Step 2. Visual search for <locations> of <keys> on <a QWERTY keyboard>
Step 3. Reach <keys> on <a QWERTY keyboard> with <hands>
Step 4. Return with goal accomplished

Method for GOAL: Visual search for <locations> of <keys> on <a QWERTY keyboard>
Step 1. Recall <characters> from <working memory> as <the target characters>
Step 2. Watch for <key labels> on <a QWERTY keyboard>
Step 3. Compare <key labels> with <the target characters>
Step 4. Decide: If match, then move to step 5
Else move to step 2
Step 5. Retain <the location> of <key labels>
Step 6. Return with goal accomplished

the model types 1,000 letters from the Nelson-Denny Reading Test; and the
model performed 10 simulation runs with different standard random number
series in the Promodel software [Promodel 2004].

In the following, the simulation mechanisms and results are described in
detail for each of the six groups of phenomena just reviewed. In each group,
we describe how the corresponding phenomena are generated based on the
mechanisms in the queuing network. Simulation results were validated with
the same error estimation calculation method employed in John [1988; 1996],
including the percentage of relative error = |Y — X |X - 100\%, Y: simulation
result; X: experimental result, which is summarized at the end of this section.

3.1 Basic Phenomena

3.1.1 Simulation Mechanisms. The ten phenomena in this group are mod-
eled with three fundamental mechanisms of the QN-MHP: parallel processing
(phenomena 1, 7, 12), motor processing (phenomena4, 5, 6, 8, 9, 11), and visual
processing (phenomenon 10).

(1) Parallel Processing (Phenomena 1, 7, 12). Phenomena 1, 7, and 12
emerge naturally as the result of parallel processing in the queuing network.
Typing is faster than choice reaction time (phenomenon 1) because the servers
in the visual perceptual subnetwork of the QN-MHP can process visual entities
(watch for the remaining letters to be typed) at the same time while the motor
servers execute typing actions. This is in contrast to a choice reaction time task
which requires a single response execution to follow stimuli perception in a
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serial manner. In the QN-MHP, the two hand servers can process information
in parallel, while each hand can only process information serially, producing
phenomenon 7, namely alternate-hand keystrokes are faster than same-hand
keystrokes. Similarly, a concurrent task does not affect typing (phenomenon
12) when it involves the servers and routes that can be performed concur-
rently with the typing task, as in the case of the tone-pedal pressing task (see
Table III for its NGOMSL task description).

(2) Motor Processing (Phenomena4, 5, 6, 8,9, 11). The motor subnetwork in
the queuing network model is able to generate these 6 phenomena in a natural
and consistent manner. In the motor subnetwork, motor programs of high-
frequency digrams are retrieved more often by server W from server D, requir-
ing less processing time than low-frequency digrams and producing the digram
frequency effect according to Equation (2) (phenomenon 8). Correspondingly,
if all of the letters to be typed are composed of random ordered letter pairs,
this digram frequency effect disappears and the interkey time increases (phe-
nomenon 5). Similarly, if the model can only sample one or two characters at
one time via the preview window, it increases the chance that motor programs
of high-frequency digrams are decomposed and therefore attenuates this di-
gram frequency effect, producing phenomenon 6, the typing rate is impaired
by the restricted preview window. In contrast, if only the order of the word is
randomized but the order of the letters in each word remains unchanged (phe-
nomenon 4) or the number of letters in each word increases (phenomenon 9),
this digram frequency effect is not affected since the digrams in each word are
still preserved, generating phenomena 4 and 9, that is, interkey time is inde-
pendent of word order and its length. In addition, step 3 in the NGOMSL-style
task description (press < > on < > with < >), a task-independent operator
treating task-specific information such as keyboard layout as its parameters,
specifies how the two hand servers interact with a QWERTY keyboard (imple-
mented in the m-h QWERTY module) and generates the movement distance
of fingers according to the topography of the keyboard. Then the hand servers
in the model are able to produce the movement time of fingers (see Appendix
3), producing phenomenon 11, the keystroke time depends on the specific con-
text. It is important to note that there is no free parameter in the formula to
simulate the experimental results.

(3) Visual Processing (Phenomenon 10). Phenomenon 10 is produced by the
model naturally via its visual sampling process defined in the “watch for”
operator. The hunt-feature production which is employed by ACT-R and im-
plemented in QN-MHP, facilitates the servers in the visual perceptual sub-
network to locate the fixation point at the feature of a meaningful unit, the
middle point of the first half of a word [Rayner 1998] in the text-viewing condi-
tion. This process indicates that the first character in each word is the expected
first character in each chunk (see calculations in Appendix 2), which increases
the processing time of the first character of each word by the time needed in en-
coding visual stimulus into chunks, producing phenomenon 10, the keystroke
of the first character is longer than that of other keystrokes in a word.
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Table III. NGOMSL-Style Task Description of Tone-pedal Press Task
GOAL: Do tone-pedal pressing task

Method for GOAL: Do tone-pedal pressing task
Step 1. Listen to <the tone> from <the speaker>
Step 2. Retain <the tone>
Step 3. Compare: <the tone> with <the target tone> in memory
Step 4. Decide: If match, then go to step 5
Else move to step 1
Step 5. Press <the pedal> on <the floor> with <one foot>
Step 6. Return with goal accomplished

3.1.2 Simulation Results. QN-MHP showed an average interkey time of
176ms, which was shorter than the choice reaction time modeled by QN-MHP
1.0 (the typical two choice reaction time is 320ms, [Feyen 2002] (phenomenon
1, estimation error= 0.56%). In these keystrokes, the simulated alternate-hand
strokes were 40ms shorter than the same-hand strokes on average (phenom-
enon 7, estimation error= 11%). The simulated average interkey time in the
concurrent task situation was 174ms which was not affected by the pedal-
pressing task and no significant difference in the number of typing errors
(Kolmogorov-Smirnov Test, Z=0, df=18 (10 runs for the single and concurrent
task conditions), p=1>.05) was found between the simulated single and dual
task situations (phenomenon 12, estimation error= 5.95%).

When the order of the words was randomized but the order of letters in
each word remained unchanged, the simulated interkey time did not show
significant change compared to that in the normal text typing condition
(t(19998)=-1.60, p=.11>.05) (phenomenon 4). However, when the order of let-
ters within each word was randomized, the simulated average interkey time
increased to 354ms (phenomenon 5, estimation error=22%); as the size of
the preview window decreased, the simulated interkey time also increased
(R square of simulated interkey time is .97, see Figure 2) (phenomenon 6,
estimation error = 10.98%). In addition, the simulated interkey time of
high-frequency digrams was significantly shorter than that of low-frequency
digrams (t(398)=2.27, p =.024<.05) (phenomenon 8) but no significant differ-
ence of simulated interkey time was found between the long and short words
(t(196)=1.45, p=.148>.05) (phenomenon 9). The simulated interkey time of
the first keystroke in a word was 14% longer than that of the subsequent key-
strokes (phenomenon 10, estimation error=30%).

The simulated movement time and interkey time of the same letter pairs
modeled by TYPIST are summarized in Table IV, which shows that interkey
time depends on the specific context (phenomenon 11).

3.2 Units of Typing in Transcription Typing

3.2.1 Simulation Mechanisms. The six phenomena in this group are mod-
eled with two fundamental mechanisms in the model: entity-based informa-
tion processing (phenomena 13, 15, 16, 17, 30) and parallel processing (phe-
nomenon 14).
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Fig. 2. Comparison of simulated interkey time and gaze duration per character with those of
experimental results [Inhoff et al. 1992a; 1992b] in different preview window sizes (unit of size:
character).

Table IV. Simulation Results of Interkey Time of the Letter Pairs

Observed Simulation Results Absolute of

Keys (ms) Distance (cm) | Interkey time(ms) | relative error %

e-e 165 0 165.0 0.00

d-e 201 2 240.2 19.49

c-e 215 4 249.4 16.00

r-e 145 1 151.2 4.26

t-e 159 1.5 154.7 2.70

f-e 168 2 157.7 6.14

g-e 178 3 162.7 8.61

v-e 178 3 162.7 8.61

b-e 195 4 166.9 14.42
Average of relative percentage of error 891

(1) Entity-based Information Processing (Phenomena 13, 15, 16, 17, 30).
An entity is a basic piece of information processed in the queuing network
model, which allows us to observe the activity of entities in the network dur-
ing the simulation and count the number of these entities in various parts of
the network with simple calculations based on the definitions of tying units.
According to the definition of copying span, that is, the number of characters
typed correctly after an unexpected disappearance of the copy, once the input
to the model is suddenly stopped, the total number of entities (characters) held
and processed in the model equals copying span and its expected value is 10
characters (phenomenon 13) (see Appendix 5 for its estimation). Moreover,
since the visual sampling process defined in the watch for operator allows x
characters to enter the model at one time, when the input to the model is sud-
denly stopped, these x sampled characters are already in the model and thus
counted as part of the copying span (see Figure 3). As shown in Figure 3,
eye-hand span (the number of characters between the fixation point and the
character currently being typed) equals the expected copying span minus the
x/2 characters on the right side of the fixation point excluding the character
being pressed. Given the optimal x value via the optimization process (x,,:=4,
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Fig. 3. Graphical illustration of the expected copying span, eye-hand span and detection span.

see Appendix 4), the expected eye-hand span=expected copying span-x/2-1=10-
4/2-1=7 characters (phenomenon 15). When the text to be typed is composed
of random letters, similar to the simulation mechanism of phenomenon 5, the
digram frequency effect disappears and each pair of entities takes a longer
processing time in the model. Since entities in each subnetwork decay in the
model, this reduces the amount of entities held and processed in the model,
producing smaller copying spans and eye-hand spans (phenomenon 16). More-
over, when the text to be typed is composed of random letters, the chunk size of
each pseudoword decreases, thus increasing the amount of time in perceiving
each pseudoword. In addition, as shown in Figure 3, the detection span (char-
acters between the capital character and the character currently being typed)
is the sum of the eye-hand span plus the radius of foveal vision excluding the
capital character (the central 2 degree vision, 1 degree as radius= 4 characters
[Rayner 1998]). Thus, expected detection span=expected eye-hand span+4-
1=7+4-1=10 characters (phenomenon 30). Finally, once one of the characters
in the text to be typed is suddenly replaced by another character, the model
is able to detect this change as long as the entities have not left server Y be-
cause server Y is the server for detecting errors and reassembling the motor
program in the motor subnetwork. Thus, the total number of entities in the
servers after server Y (server Z and the two hand servers) is the replacement
span and its expected value equals 3.6 characters (see Appendix 5 for its es-
timation) (phenomenon 17). In addition, due to the stochastic property of the
model (e.g., exponentially distributed processing time of the servers), there are
possible differences between these predicted values and simulation results.

(2) Parallel Processing (Phenomenon 14). Similar to phenomenon 12, the
queuing network model is able to process the entities representing the stop-
ping span task as well as those of the transcription typing task at the same
time. Table V listed the NGOMSL task procedure of the stopping span task
as a secondary task. Consistent with the definition of the stopping span, the
number of entities typed by the model during the processing period of a tone is
regarded as the simulated stopping span.

3.2.2 Simulation Results. The simulated average copying span, eye-hand
span, and detection span were 9.4, 6.4, and 9.4 characters, respectively (phe-
nomenon 13, estimation error=35.6%; phenomenon 15, estimation error=28%;
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Table V. NGOMSL-Style Task Description of Stopping Span Task

GOAL: Do stopping span task
Method for GOAL: Do stopping span task

Step 1. Listen to <the tone> from <the speaker>
Step 2. Retain <the tone>
Step 3. Compare: <the tone> with <the target tone> in memory
Step 4. Decide: If match, then go to step 5
Else move to step 1
Step 5. Cease //task complete

phenomenon 30, estimation error=17.5%). When the text to be typed was
composed of random letters, the simulated eye-hand span decreased to 1.4
characters on average (phenomenon 16, estimation error=20%). The simu-
lated average stopping span and replacement span were 2.5 and 3.5 charac-
ters, respectively (phenomenon 14, estimation error=15.7%; and phenomenon
17, estimation error=20.7%).

3.3 Errors in Transcription Typing

3.3.1 Simulation Mechanisms. The five phenomena in this group are sim-
ulated with two mechanisms of the queuing network model: distribution of
movement distance and force (phenomena 19, 20, 21) and optimized motor
processing (phenomenon 22). Phenomenon 18 can be modeled by the further
calculation of simulation results of phenomena 19-22.

(1) Distribution of Movement Distance and Force (Phenomena 19, 20, 21).
Based on Tanaka’s 1994 equations in quantifying the root-mean-square error
(RMSE) of movement directions generated by population vectors in the pri-
mary motor cortex, the distribution of movement distance of fingers follows a
normal distribution ( Dis ~) (unit: cm) (see its derivation in Appendix 3) which
allows the queuing network model to generate intrusion and substitution er-
rors depending on the range of finger movement distance (Dis) in three possible
conditions (see Figure 4): i) 0<=Dis<k+(g-f/2), when the contact area between
a finger and a target key does not contact with the other keys surrounding the
target key; i1) k+(g-f/2)<=Dis<k+f/2, when this area contacts both the target
key and an adjacent key, that is, the finger hits 2 keys simultaneously (intru-
sion error, phenomenon 20); iii) Dis>k+{/2, when this area falls in to the area
of an adjacent key but not the target key (substitution error, phenomenon 19).

According to the distribution of the pressing force of fingers (see Appendix
3) and the typical key activation force (0.28 N [Gerard et al. 1999]), the model
is also able to generate omission errors in phenomenon 21. The simulated
omission errors are categorized into two types. Type A is an omission error
which occurs and no simulated finger movement is recorded (the omission er-
ror is caused by the failure to preserve sequences in the sensory and working
memory), and type B is an omission error which occurs and the movement of a
finger is recorded but the simulated finger pressing force on the target key is
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T2 T2
g g Dis
is || i k
Tl } T1 J }
0<=Dis<kHg-f/2): Hit kH(g-fi 2y <=Dis<k+{f2: Dis=k+f/2:
Hit 2 keys simultaneously Hit the adjacent keys
(Intrusion errof) (Substitution errof)

T1:target key
Contact area between finger T2: adjacent key
and key

g: the average width of gaps between adjacent keys (0.55 cm, measured on a standard QWETY keyboard)
k: half of the average key width (0.65 cm)

f: the average diameter of the finger-key contact area, which equals to the half width of the key (0.65 cm)
Fig. 4. Three possible conditions for the range of finger movements in pressing the target key.

less than 0.28 N (the omission error is caused by an insufficient depression of
a keystroke).

(2) Optimized Motor Processing (Phenomenon 22). The coordination of bi-
manual movements in motor processing is optimized via the optimization of
EPD (cross-hand error prevention duration, i.e., waiting for the duration be-
tween two entities belonging to different hands, see Appendix 4). In Monte
Carlo simulation if EPD is too long, the interkey time becomes very long which
deteriorates the typing performance; if EPD is too short, the model has to
spend extra time in correcting the typing errors (see Appendix 4).

Since server Y in the queuing network model is able to detect errors via
the tactile feedback from the two hand servers and server X, typing errors
caused by the hand movements including the deviated movement direction
and finger force as well as the insufficient waiting time between the two
hands, can be detected without reference to the typed copy. The ratio of typ-
ing errors detected without reference to the typed copy over the total number
of errors is calculated based on the simulation results of phenomena 19-22
(phenomenon 18).

3.3.2 Simulation Results. It was found that in typing 10,000 characters,
(1) 41.3% of the substitution errors involved horizontally or vertically adja-
cent keys (phenomenon 19, estimation error=37.7%); (2) 35.4% of the intru-
sion errors involved keystrokes with less than 10% of the average interkey
time and 57.1% of them involved an adjacent key in the same row or the same
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column (phenomenon 20, estimation error=6.4%); (3) the average interkey time
of the keystrokes right after an omission error occurred was 253ms, which was
1.44 times the simulated average interkey time (176ms) (phenomenon 21, es-
timation error=6.6%); (4) 68% of the transposition errors were made by the
alternate hands (phenomenon 22, estimation error=6.6%). In typing 10,000
characters, 74.5% of the errors were caused by the hand and finger movements
and detected without reference of the typed copy (phenomenon 18, estimation
error=6.4%).

3.4 Skill Effect in Transcription Typing

3.4.1 Simulation Mechanisms. The eight phenomena in this group are
modeled by the three general learning mechanisms of the queuing network
model described earlier in this article: change of routing probability), opti-
mized motor processing, and general effects of learning.

(1) Change of Routing Probability (Phenomena 24, 25). During the learn-
ing process of transcription typing, after entities arrive at server B from the
perceptual subnetwork, entities can either take route 1 (go to server C and
F for visual guidance and then go to server W without long-term motor pro-
gram information retrieved from server D) or route 2 (go to server W directly
with the long-term motor program information retrieved from server D). At
the beginning stage of the learning process, server D has not stored sufficient
motor program information and server W is not able to retrieve these motor
programs effectively from server D, prolonging the travel time of route 2 and
decreasing the routing probability of taking route 2 based on Equation (1).
With the number of practice increases, more and more motor programs of di-
grams as well as the location information of keys are stored at server D. Once
the travel time of route 2 decreases with a higher efficiency in retrieving motor
program in server D and its value is lower than that of route 1, the majority
of entities start to travel via route 2. In other words, at this stage, the model
does not have to perform visual search for each digram and the route of visual
search (Server C—F—C) is skipped by the majority of entities forming a new
route starting from the servers in the visual perceptual subnetwork to Server
B— W— Y— Z— Two Hand Servers. This simulation mechanism is consis-
tent with fMRI studies in transcription typing and other motor control tasks.
At the beginning stage of learning, a visuomotor control task including tran-
scription typing mainly activates the DLPFC (dorsal lateral prefrontal cortex)
(Server C) and the basal ganglia (Server W) [Jueptner and Weiller 1998; Sakai
et al. 1998]. In the well-learned stage (skilled typist in Gordon et al.’s study
[1995]), in typing normal texts (multidigit sentence), activation of the DLPFC
disappeared and stronger activations were observed in the SMA (supplemen-
tary motor area) (Server Y), the basal ganglia (Server W), and the primary
motor cortex (M1) (Server Z).

Since the server processing times follow the exponential distribution in QN-
MHP [Liu et al. 2006], if Y;..Y}, are k£ independent exponential random vari-
ables, their sum X follows an Erlang distribution (see Equation (3)). Through
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rewiring of routes in the learning process, servers C and F are skipped by the
majority of entities, that is, parameter £ in Equations (4) and (5) decreases.
If £’ after practice than is smaller & before practice, then the expected overall
processing time and its variance decreases, producing phenomena 24 and 25
(see Equation (6)).

k
X=>Yi 3)
i=1
k k 1
E[X]=ElY Yil=) EIYil=k> 4)
k k 1
VarlX1=Varl) Yil=) VarlYil=k— (5)
=1 =1
If ¥ <k, then E[X'] < E[X]; Var[X'] < Var[X] 6)

(2) Optimized Motor Processing (Phenomenon 23). Based on the optimiza-
tion process of the hand and finger movements in the learning process (see
Appendix 4), the interkey time of the two-hand (2H) digrams and two-finger
(2F) digrams decrease via the optimization of both EPD and 2FC (two-finger
coordination time), while the interkey time of the digrams of the one-finger
(1F) digrams is reduced only by the optimization of 1IFW (one-finger waiting
time). Since the sum of the magnitude of EPD and 2FC’s reduction is greater
than that of 1IFW, the model produces phenomenon 23, the reduction of the 2F
or 2H digrams’ interkey time is greater than that of 1F digrams.

(3) General Effect of the Learning Process (Phenomena 26, 27, 28, 29, 31).
The increase in the size of the typing units (copying span, eye-hand span, stop-
ping span, replacement span in phenomena 26-29) is due to several factors in
the learning process: (a) the processing speed increases in each server (see
Equation (2)); (b) the route of the majority of entities rewires and servers C
and F are skipped from the route (see simulation mechanism of phenomena 24
and 25), and this rewiring process reduces the amount of time that each entity
spends in the model (see Equation (6) in the simulation mechanism of phe-
nomenon 24); (¢) the optimization of the motor process reduces waiting time in
movement (see Appendix 4). Since every subnetwork has certain decay func-
tions in the model [Card et al. 1983; Ito 1991], the less time each entity spends
in the network, the larger the number of entities held and processed in the
model, increasing the value of these typing units (see the simulation mecha-
nism of phenomena in the “units of typing” group) and decreasing the interkey
time (phenomenon 31). However, the random effect in the Monte Carlo sim-
ulation in the optimization process (see Appendix 4) as well as the stochastic
property of the whole model may attenuate the increase of these typing units
via the learning process.
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3.4.2 Simulation Results. The model’s simulation of its learning process!
showed that the simulated tapping rate and the typing speed during the learn-
ing process was significantly correlated (Pearson correlation coefficient=0.784,
N=8, p =.021<.05) (phenomenon 24). The change of the quartile range (75%
quartile-25% quartile) of the interkey time, that is, the inter-keystroke vari-
ability, was correlated with the change of the simulated typing speed time with
the Pearson correlation coefficient -0.911; the intrakeystroke variability simu-
lated by the model correlated -0.795 with the simulated typing speed (phenom-
enon 25, estimation error = 22%). The average slope of regression equations
relating the simulated digram interval to the simulated typing speed were -
2.03 and -1.71 for 2H and 2F digrams respectively, while the average slope of
1F digrams was -1.65 (phenomenon 23, estimation error = 17.9%).

For the eye-hand span, significant correlation between the eye-hand span
and the net words-per-minute was found in the simulation results (Pearson
correlation coefficient=.721, N = 8, p = .044 < .05). The eye-hand span of the
model increased by 0.87 characters on average with every 20 net words per
minute increase in skill level (phenomenon 26, estimation error = 2.6%). For
the replacement span, the Pearson correlation coefficient between net
words-per-minute and the replacement span was .867 (N=8, p=.005<.01) (phe-
nomenon 27, estimation error = 8.4%). For the copying span, the Pearson
correlation coefficient between the simulated copying span and net words-
per-minute was 0.704 (N=8, p=.05) (phenomenon 28, estimation error=23.5%).
For the stopping span, the correlation efficient between the simulated stop-
ping span and net words-per-minute was 0.868 (Pearson correlation, N=8,
p=.004<.05) (phenomenon 29, estimation error=44.6%). After the model fin-
ished its learning process, the simulated interkey time reduced from 385 ms to
176 ms, which followed the power law of practice (R square=0.84 with signifi-
cant correlation, N=8, p =.005 <.01) (phenomenon 31).

3.5 Phenomena in Eye Movements

3.5.1 Simulation Mechanism. All three phenomena in this group emerged
as the natural outcomes of the queuing mechanism in the queuing network
model. First, similar to the simulation mechanism for phenomenon 6, when
the preview window size is very small (1 or 2 characters), motor programs of
the high-frequency digrams are decomposed, which increases their retrieval
time at server W from server D. Since information entities flow in the model in
a queuing process, slower information processing in the motor subnetwork,
in turn, slows down information processing in the perceptual subnetwork.
Therefore, gaze duration per character increases because servers in the visual
perceptual subnetwork have to wait for the motor subnetwork to catch up,

IThe number of keystrokes typed by QN-MHP and the number of training stages in the simulation
of all of the 8 phenomena in skill effects were set according to those in Gentner’s experimental
study [1983]. A total of about 15,000,000 letters were typed in eight training weeks.
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producing phenomenon 32, gaze duration per character decreases with an en-
larged preview window size.

Second, following the queuing process in visual sampling—the number of
entities (the number of chunks ¢ multiplied by the chunk size x) that leave
server B at one time determines the number of entities sampled by servers
in the visual perceptual subnetwork at one time, the expected saccade size (s)
(the number of entities entering the visual perceptual subnetwork at one time)
equals the product of ¢ andx. Through the optimization process (see Appendix
4), the expected optimal value of ¢ andx is 1 and 4, respectively, indicating that
the expected saccade size is 4 characters (phenomenon 33).

Third, the average fixation duration in phenomenon 34 is the average gaze
duration per character without the preview window (phenomenon 32) multi-
plied by the average saccade size (phenomenon 33).

3.5.2 Simulation Results. Figure 2 shows the simulated gaze duration per
character (R square of the simulated fixation time is .94) (phenomenon 32).
The simulated gaze duration per character without the preview window was
136ms on average. The average saccade size generated by the model was 3.18
characters (phenomenon 33, estimation error= 20.5%) and the average fixation
duration was 483ms (phenomenon 34, estimation error= 20.8%).

4. DISCUSSION

An important contribution of this current work is the extension of QN-MHP
to incorporate a number of fundamental psychological functions that were ab-
sent in its earlier version and the application of QN-MHP to model 32 of the
34 transcription typing phenomena. Working as a single cognitive architec-
ture with the same set of assumptions and mechanisms, the queuing network
model is able to simulate diverse aspects of human performance in this typi-
cal human computer interaction task, namely, interkey time, typing units and
spans, errors, skill acquisition, and eye movements. Furthermore, the queuing
network model offers an alternative way of understanding the mechanisms of
cognition and human-computer interaction.

In terms of cognition, first, the success of modeling many transcription typ-
ing phenomena via the queuing mechanism (e.g., phenomena 1, 7, and all of
the 3 eye-movement phenomena) provides further support that the queuing
network might be one of the basic mechanisms in cognition especially when
the tasks involve interactions among different brain regions and body parts.
Second, by using one of the unique features of queuing networks, routing prob-
ability, the queuing network model is able to quantify the learning process at
the behavioral level (phenomena 24 and 25) with its mechanism consistent
with the change of different brain activation patterns discovered by neural sci-
entists at the neurological level. Learning is one of the basic mechanisms in
cognition as well as human-machine interactions [Braus 2004; Heathcote et al.
2000; Schmidt 1988]. However, learning mechanisms did not exist in the pre-
vious version of QN-MHP. These two points are consistent with the findings
in neuroscience [Bullock 1968; Eagleman et al. 2004; Smith and Jonides 1998;
Taylor et al. 2000; Braus 2004; Chklovskii et al. 2004; Habib 2003].
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Table VI. Extension of the Model in Simulating Human Performancen in
Inputting Textual Information via Multimodal Human-Computer Interaction

Model Input (source of text) Model Output devices

e Watching (display) o Typing (different keyboards)

e Listening (speaker) e Handwriting (hand recognition)
e Thinking (LTDSM) e Reading aloud (voice recognition)

In terms of human-computer interaction, first, the queuing network model is
able to simulate and analyze design concepts related to information processing
capacity (e.g., various typing units and spans). Using an intrinsic feature of
queuing networks, entity-based information processing, the model is able to
not only quantify but also visualize the various spans in typing, which has po-
tential value for HCI interface comparison and analysis. Second, queuing or
waiting is part of our intuitive daily experience, both in general and in HCI
tasks, and the queuing network model emphasizes the importance of this as-
pect and explicitly incorporates the queuing process as one of the major mech-
anisms in human-machine interaction (e.g., in simulating phenomenon 32, the
eyes are waiting for the hands to catch up).

In practice, the queuing network model can be applied in the design of user
interfaces. For example, by modifying the arrival pattern of stimuli and us-
ing appropriate interface modules, the queuing network model can simulate
human performance in inputting textual information via multimodal human-
computer interfaces. Table VI summarizes the 9 possible combinations of input
modalities and output devices (3¥3=9) which can be simulated by QN-MHP.
On the one hand, text (entities) can be set to arrive at Server 1 (visual modal-
ity), Server 5 (auditory modality), or Server C (central executive, arriving from
long-term memory Server D or H) for simulating human performance in in-
putting textual information from these different sources (looking while typing,
listening while typing, or thinking while typing). On the other hand, if the
interface/device module is replaced by the modules of different keyboards (e.g.,
changing the distance between different keys) or modules of a handwriting
recognizer [Wu et al. 2003] or when the route of entities are changed from the
hand servers to the Mouth server, then the model can simulate human per-
formance in typing on different keyboards, handwriting (handwriting recogni-
tion), and reading aloud (voice recognition).

Furthermore, QN-MHP is also able to model and generate both mental and
motor workload by using the subnetworks’ utilization levels as workload in-
dexes [Liu et al. 2006; Wu and Liu 2007]. In the simulation results in model-
ing the learning phenomena, it was found that the utilization of the cognitive
subnetwork is lower than that of the perceptual and motor subnetworks in the
well-learned situation of the model. This indicates that the mental workload
of skilled typists is mainly allocated at the perceptual and motor subnetworks
which is consistent with the experimental results in phenomenon 3, skilled
typist can perform reading comprehension (a high level of mental workload
at the cognitive subnetwork) and transcription typing at the same time with
very little interference. Moreover, server utilizations in the simulation re-
sults suggest that the physical workload (utilization) on the left-hand server is
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significantly higher than that of the right-hand server, and it is also consis-
tent with the experimental results of QWERTY keyboard studies which found
that the left hand is used more often than the right hand in typing tasks
[Goldstein et al. 1999]. The authors’ recent work in modeling driver’s workload
and performance using QN-MHP provides a detailed description on quantify-
ing mental workload with the queuing network model [Wu and Liu 2007].

In addition, QN-MHP is article related to existing cognitive models and ar-
chitectures. The queuing network model described in the current paper is
based on MHP in terms of its basic layout (perception, cognition and motor
components) as well as the setting of servers’ processing speeds [Liu et al.
2006]. Therefore, TYPIST and QN-MHP share the same ancestor (MHP); how-
ever, QN-MHP and TYPIST use different modeling mechanisms. QN-MHP is a
simulation model with queuieng network properties, whereas TYPIST is not a
simulation model and it analyzes information processing as PERT scheduling
charts. Liu [1996] has shown mathematically that PERT models are a special
case of queuing network models.

Currently, QN-MHP has several limitations in modeling various kinds of
tasks. First, the tasks modeled by QN-MHP are focused on perceptual-motor
tasks; at this stage, QN-MHP has not modeled any high-level cognition phe-
nomena including problem solving, reading comprehension, and complex rea-
soning. This is also the reason why QN-MHP is not able to quantify the 2
typing phenomena in transcription typing related to reading comprehension.
Second, QN-MHP currently uses the NGOMSL method to analyze each task
before a model simulation. If the strategies of subjects change, the NGOMSL
description needs to be changed, thus constraining the model’s ability to quan-
tify individual differences as a function of task strategies.

In summary, our model offers an alternative method in modeling and quan-
tifying a diverse range of phenomena in typing. We are systematically ex-
tending the model to cover a broader range of tasks. Our comprehensive com-
putational model of transcription typing offers not only theoretical insights
into typing performance, but it is a step toward developing proactive er-
gonomic design and multipurpose analysis tools for tasks in human-computer
interaction.

APPENDIXES
Appendix 1. Derivation of Equation (1)

Equation (1) is derived based on Black’s model [1999] as well as other neuro-
science findings. Black proposed a model to explain the role of BDNF (brain
derived neurotrophic factor) in its regulation of synaptic plasticity in adults
BDNF increases the activity of NMDA (N-methyl-D-aspartate) receptors, in-
creases neuron channel open probability by increasing opening frequency, and
then increases the velocity of spikes trains travel (V) through these neuron
channels. Hence, the stronger synaptic connection strength (the amount of
presynaptic transmitter released and the degree of postsynaptic responsive-
ness) of an individual route, the greater the probability (P;) that spikes trains
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Fig. 5. Multiple routes for one location in queuing network (server 0 has U multiple routes as
output).

(represented by entities) travel through that route [Black 1999; Braus 2004;
Chklovskii et al. 2004; Habib 2003] (see Equation (7) and Figure 5).

ST

Pi= i (7
> ST
=1
In Equation (7), the numerator (ST;) stands for the standardized synaptic
connection strength of route i (ST; € [0, 1]). The denominator represents
the sum of the standardized synaptic connection strength of all the multiple
routes starting from the original brain region (server 0 in Figure 5). Moreover,
the standardized synaptic connection strength of route i (ST}) is in direct ratio
with the standardized velocity (Vi) that the spikes trains travel through that
route [Black 1999; Bullock 1968; Chklovskii et al. 2004] (see Equation (8)).

STi =Ty Vi (8)

In Equation (8), ry is a parameter stands for the ratio between ST; and V;.

Since the queuing network is able to capture several properties of informa-
tion processing in the human brain spikes trains carrying information (repre-
sented by entities) travel through different brain regions and form brain traffic,
including possible waiting of the previous information flow to be processed (see
the first learning mechanism in the queuing network). The travel time of the
spikes trains (represented by entities) in route i is composed of both waiting
and processing time and therefore this travel time can be regarded as the sum
of waiting time (W;) and processing time (T;) of entities, That is travel time
(S)) in that route. Furthermore, this travel time (sum of waiting and process-
ing time) is an inverse ratio with the standardized velocity (V;) of the travel

process (see Equation (9)).
1
Vi=y ( ) =¥ )

Wi+Ti Sl

In Equation (9), y is a parameter represents the inverse ratio between W;+T;;
and Vi.
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Combining Equation (7)—(9), Equation (10) and (11) quantify the probability
(P;) that the spikes trains (entities) pass through route i in totally U multiple
routes.

ST, nVi n(d)  ys
PI,: = = = (10)
U U U U
xSt ynvi x[n(5)] L4
J=1 J=1 J=1 Jj=1
Thus, we have:
1/5;
P = — 1 (11)
25
1

In short, the learning process increases the synaptic connection strength
which improves the effectiveness of the information processing of brain regions
in the neuron pathway (route) and then changes the probability that the ma-
jority of spikes trains (entities) enter one of multiple neuron pathways (routes).
If the majority of entities change their route from one to another, rewiring of
neuron pathways (routes) occurs.

Appendix 2. Calculation of the Expected Position of the First Character in Each
Chunk in a Word

The expected position of the first character in each chunk can be estimated
by using the following logic. Suppose the position of characters of a word is
starting from 1, based on the definition of different units in typing (see Figure
3), the expected position of the first character in each chunk (E(¥C)) can be
quantified into Equation (12).

E(FC) = E(FP) — P"";‘ 11 (12)

In Equation (12), E(FP) stands for the expected position of the fixation point,

Xopt—1
2

and { —‘ refers to the half-range of each chunk under extensive practice

condition. Since the average word length is 5 characters [John 1988; 1996],
the expected fixation point is located at the middle point of the first half of
a word (see the simulation mechanism of phenomenon 10), i.e. the second
character (E(FP)=2). In addition, the optimal chunk size is 4 characters (x,,;=4,
see Appendix 4). Therefore, E(FC) equals 1 (see Equation (13)), that is the
expected position of the first character in each chunk equals the first character
in each word in transcription typing.

E(FC) = E(FP) - ["”"”52_ 1} _o- [%W -1 (13)

Appendix 3. Processing Logic of Hand and Foot Servers

This section describes the context-free processing logic of the hand and foot
servers in detail.
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3.1 Hand Servers

The processing logic of hand servers includes three aspects: simulated move-
ment time, distribution of movement distance and the pressing force of the
fingers in the hand servers.

3.1.1 Movement Time. The simulated movement time of hands including
thei fingers is estimated depending on whether the movement is executed with
visual guidance or not. If the movement is executed with visual guidance, a
variant of Fitt’s Law [Welford 1968] is used to estimate the horizontal move-
ment time (MT) of the hands including their fingers (see Equation (14)).

MT = I,logs(Dis/S + 0.5) (14)

In Equation (14), Dis is the movement distance, S refers to the size of a
key or button (S =1.3cm for a standard QWERTY keyboard), and I, is a para-
meter corresponding to different parts of the hands, for instance, for fingers,
I,,=1000/38=26.3 [Langolf et al. 1976].

If the movement can be executed without visual guidance (that is, ballistic
movements), e.g., movements in typing after extensive practice, the queuing
network model uses the formula proposed by Gan and Hoffman [1988] to esti-
mate the movement time:

MT =a+b+Dis, (15)

where a and b are constants depending on the number of components in
the movement (e.g., a=52.95, b=15.72 for the movement composed of single
component).

3.1.2 Distribution of Movement Distance. The distribution of movement
distance is estimated based on the findings in neurological studies that the
movement direction of body parts can be predicted by the action of motor cor-
tical neurons in the primary motor cortex [Georgopoulos et al. 1993]. When
individual cells in the primary motor cortex are represented as vectors, they
make weighted contributions along the axis of their preferred direction and
the resulting vector (population vector) is the sum of all of these cell vec-
tors. Tanaka [1994] quantified the RMSE (room-mean-square error) of the
movement direction (RMSE,) of a certain body part as a function of the pop-
ulation size (M) of corresponding brain area in the primary motor cortex (see
Equation (16)).

RMSE, =97.3M 12 - 0.1 (16)

RMSE in general can be quantified as Equation (17) [Hansen et al. 1953],
where refers the difference between the expected value of the sample mean
() and the true value of (9) (unit of 0 is degree).

RMSE,; =,/SD2 + (6 — 6)2 am
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According to the law of large numbers in statistics, when the value of
the sample size increases to a great value (e.g., sample size>1000), 6 is closing
tod,ie. (3 0 — 0). Thus, RMSE; = \/SD? + (@ — )2 = /SD? = SD;.
Moreover, since Tanaka [1994] found the distribution of 0 follows normal
distribution, combining Equation (16) and (17), the distribution of 6 can be

quantified as Equation (18), where SD, stands for the standard deviation of
the distribution.

6 ~ N(, SDy)

ie. 6~ N@. 97.3M~2 — 0.1) (18)

Based on Equation (18), given that the movement distance (Dis) is the prod-
uct of the 27 xmovement radius (RD) and 0/360 (i.e. Dis = (6/360) x 27 RD),
the distribution of movement distance can be estimated via Equation (19).

Dis ~ N{Dis, [(97.3M~%2 — 0.1)/360] x 27 RD} (19)

Based on the value of M measured in neuroscience studies and the value
of RD measured in anthropometry studies, Equation (19) can be used to esti-
mate the distribution of movement distance of different body parts including
hands and fingers. For example, given that the population size (M) of the brain
area corresponding to each finger [M =7300 on average, Reinkensmeyer et al.
2003; Penfield and Rasmussen 1950] and the movement radius (RD) in typing
(17.5cm on average, since the hands of the typist are moved to reach differ-
ent keys with the wrist as an axis and the average distance from the wrist to
the tip of fingers is 17.5cm [Armstrong 2004], the distribution of movement
distance of each finger on average follows Equation (20).

Dis ~ N{Dis, [(97.3 x 7300~1/2 — 0.1)/360] x 27 x 17.5}
i.e. Dis ~ N(Dis, 0.317) (unit: cm) (20)

In other words, since 360 degree of the radius include all of the directions of
the movements, it is the radius (the distance a finger moves) that determines
whether the errors occur or not and what types of errors would occur (intrusion
or substitution).

3.1.3 Distribution of Finger Pressing Force. Table VII is directly quoted
from Li et al. [2001], which summarized the mean and standard deviation in
the distribution of fingers’ pressing force (F~N(M, SD)) in a key pressing task
under bilateral multi-finger condition.

The forces of the 8 fingers are implemented in the model’s two hand servers
as 8 variables which follow the normal distribution with mean and standard
deviation in Table VII.

3.2 Foot Server

The foot server executes the simulated movement to press a pedal and its
movement time (MT f,,;) can be estimated by the formula proposed by Drury
[1975] (Equation (21)), where S refers to the shoe width [10cm, Armstrong
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Table VII. Finger Force and its Variability in a Key Pressing Task

Right hand Left hand

Mean & SD | Little | Ring | Middle | Index | Little | Ring | Middle | Index
M (Newton) | 6.2 9.8 18.5 17.4 7.8 9.9 15.1 194
SD 2.2 2.5 3.0 2.7 1.8 1.2 3.2 2.8

2004]; W is the pedal width (10cm, same with the shoe width) and A stands for
the movement distance (3cm, typical movement distance for a foot pedal).

MT f50: = (1/1.64)[0.1874 + 0.0854 x loga(A /(W +.S) + 0.5)] (21)

Appendix 4. Optimization of the Parameters of the Queuing Network

To simulate the trial-and-error learning in the motor learning process, Monte
Carlo simulation? is performed in server B and Y to find the optimal value
of five parameters in the transcription typing task: chunk size (x), number
of chunks (¢), EPD (cross-hand error prevention duration), 2FC (two-finger
coordination time), and 1FW (one-finger waiting time).

4.1 Chunk size (x) and Number of Chunks (c)

In processing the normal text in human-machine interaction (e.g., typing and
handwriting), the chunk size (x) and the number of chunks (c) at server B
are determined by the optimization process which trades off the time required
to correct the wrongly processed entities caused by the failure to preserve the
characters at server B with the time saved by increasing the size of each chunk
and number of chunks.

Definitions:
x: chunk size R: average duration to correct an
Xopt: €xpected optimal chunk size error caused by a wrongly

N: total number of entities processed  processed entity or character
w: overall duration of processing each N/x: total chunks of a normal text

chunk at servers after server B which composed of N entities

c¢: current number of chunks at or characters

server B cx: current number of entities at
epho: rate of retrieval failure at server B

server B w/x: duration of processing each

entity or character

w(N/x): overall duration of
processing N entities or
characters:

2The length of the Monte Carlo simulation (number of letters typed by the model) is the same
with the approximate number of letters typed during the learning process of typing (10,000,000
letters, [Gentner 1983]) (There are a total of 50 runs for the Monte Carlo simulation.) The random
numbers used in each run as the stochastic input to the model are the standard random number
series in Promodel software [Promodel 2004].
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Objective function:

Z = Min [w(N/x) + epno NR] = Min{N[(w/x) + e pno R1} (22)

i.e. Z' = Min [(w/x) + epno R] (23)

One aspect of typing out the chunks and fixing the errors in retrieval of
these chunks is the objective function (Equation 22). The task completion time
in this function is composed of two parts: a) typing time (w(N/x), that is, the
overall duration of processing each chunk at servers (w) multiplied by the total
chunks of a normal text which is composed of N (N/x)); b) fixing time (rate
of retrial failure of entities (ep,) multiplied by the total number of entities
processed and the average duration to correct a wrongly processed entity).

Constraints:

(a) The average preservation duration of each character at server B (B)) is
quantified in Equation (24):

n=cx

1
B, = Zl n (w/x) = 0.5(1 + cx)(w/x) (24)

For example, suppose 3 characters (L1, L2, L.3) enter server B with order
L1 to L3, and the duration of L3 preserved at server B equals (w/x) wait-
ing time for the current character to exit the model so that L3 can enter
server W. Similarly, duration of L2 preserved at server B is 2 (w/x) and
L1 is 3(w/x). Thus, the average preservation duration of each character is
[(1+2+3)/3]x (w/x).
(b) Based on the decay rate of characters at server B [Card et al. 1983]:
i) if 1<cx<4 one word condition; average word length is 4 for the most
frequent used words in Murdock’s experiment [1961]:

epho = .0065 x 0.5(1 + cx)(w/x) (25)
i1) if 5<cx<8 (2 words condition, deducted from 1 and 3 words condition):
epho = .0403 x 0.5(1 + cx)(w/x) + 0.1 (26)
iii) if 9<ecx<13 (3 words condition):

epho = .074 x 0.5(1 + cx)(w/x) + 0.1 27

Therefore, the objective functions in three different conditions are:
1) ifl<ex<4:Z =(w/x)+0.0065 x 0.5(1 +cx)(w/x)R (28)
i) if 5 <ex <8:Z' =(w/x)+0.0403 x 0.5(1 + cx)(w/x)R+ 0.1R (29)
i) if9 <ecx <13:Z’ = (w/x) +0.074 x 0.5(1 + cx)(w/x)R+ 0.1R (30)

In the learning process of the model, the optimal value of ¢ and x are se-
lected via Monte Carlo simulation based on the objective functions in the three
different conditions. For example, given the range of w (.5< w <5s) in typing
normal text and R=2726ms (determined by simulation results of the model in

ACM Transactions on Computer-Human Interaction, Vol. 15, No. 1, Article 6, Pub. date: May 2008.



6: 36 . C.WuandY. Liu

09
0.8]
0.7 4

0.6 4 H\/‘“'H
=
05 e ‘

Z" {Value of Objective Function)

0.4 4 — R S —=__ =2
|
0.3 -
0.2 4
0.1 4
S S S
1 23 45 67 8 910111213
X {chunk size)

Fig. 6. The change of objective function value (Z’) with chunk size (x) and number of chunks (c)
(w=0.8s based on the simulation results in typing normal text at well-learned situation; the curves
of ¢ >3 conditions are located above the curve c¢=3 condition, following the same pattern).

correcting a typing error), by simulating the objective functions based on the
constraints, we obtained the optimal value of x and cin typing condition: c,p=1
chunk, x,,,=4 characters (see Figure 6). Based on Equation 25, e,n,=0.3 %.
In general, Equation (22)-(30) are not task-specific, and they can be applied
in modeling other text processing tasks including reading, handwriting, and
typing with other keyboards.

4.2 EPD (Cross-Hand Error Prevention Duration)

According to the queuing structure of the two hands, the entities or charac-
ters that belong to different hands have to wait EPD to prevent the frequent
occurrence of a transposition error, otherwise the transposition error always
occurs when the interkey time of the previous keystroke is longer than that
of the current keystroke in this 2H situation. The improvement of overlap-
ping movement of the two hands is quantified as the reduction of EPD via its
optimization process.

The optimization process of EPD is a trade-off between the time in typing
and the time in error correcting that is, reducing the value of EPD causes
(1) more efficient overlapping of the movements of the two hands, reducing
the interkey time and (2) higher probability in making a transposition error,
increasing the time in error correcting. This trade-off can be quantified in the
following equations.

The time (Y) saved by optimization of EPD is:

Y = N(EPD, — EPD) —eNR, (31)

In Equation (31), N is the number of characters typed, e refers to the error
rate of the transposition error made by reducing of EPD, R; specifies how long
to correct one transposition error, and EPDy is the original value of EPD at
beginning of learning.
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Hence, the optimization of EPD can be quantified with the following
equations:
Objective function:

Max(Y) = Max[N(EPDy — EPD) —eNR,] (32)

Constraints: e=f (EPD) (f is the function which represents the relationship

between EPD and e) (0<= e <=1); 0<=EPD<= 176ms (the maxim value of
EPD is lower than one interkey time on average).
Specification of parameters and constraints:

(a) N=1000 characters as the total number of characters in the sample text.

(b) EPDy = 354ms as the 2 times of an average interkey time (a sensitivity
analysis indicates that this initial value of EPD does not affect simulation
results)

(¢) R; = 3112 ms on average which is determined by simulation results of the
model in correcting a transposition error.

(d) e=f (EPD), the relationship between e and EPD is set via the curve estima-
tion of the simulation results (R square=.996) (see Equation (33)).

e=0.16 — 0.034/n(EPD) (33)

Consequently, the objective function can be simplified into the following
Equation (34):

Max(Y) = Max[N(EPDy — EPD) —eNR,]

= Max{1000 x (354 — EPD) — [0.16 — 0.034In(EPD)] x 1000 x 3122] %

Monte Carlo simulation was performed during the learning process of the
model. During the learning process, the value of EPD was updated after typ-
ing every 50 characters. A better value of EPD which generated a greater
value of Y replaced the original value of EPD and therefore we obtained the
optimal value of EPD and its range (EPD,,;=108+10ms) to maximize Y value
of the objective function (see Figure 7 for the curve of objective function) via
the learning process.

4.3 Two-Finger Coordination Time and One-Finger Waiting Time

The value of 2FC (two-finger coordination time) and 1FW (one-finger waiting
time) are set based on the similar Monte Carlo simulation logic during the
learning process the two parameters are updated during the learning process
to minimize the interkey time. The obtained optimal values of the two para-
meters were Oms.

Appendix 5. Calculation of the Expected Copying Span and Replacement Span

The copying span and replacement span can be estimated based on the fol-
lowing mechanisms. For the copying span, in the motor subnetwork, since
the half-life of entities in the motor subnetwork is 1000ms, the last entity
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Fig. 7. The relationship of EPD and Y value of the objection function in Monte Carlo simulation
results.

in the motor subnetwork decays at the end of the 1000ms with .5 of chance
when the input to the model is stopped. Therefore, including this last en-
tity, the total expected number of entities exited from the motor subnetwork
is 1000/interval of leaving = 1000/simulated interkey time = 1000/176 ~ 6 en-
tities, that is, the expected number of entities in the motor subnetwork is 6.)
In the cognitive subnetwork, only server B is in the route of entities (see sim-
ulation mechanism of phenomenon 24 and 25), and it holds 1 chunk (x,,=4
characters, see Appendix 4.) In the perceptual subnetwork, when 4 entities
in the motor subnetwork leave the model (it takes 4x176=704ms on average),
which allows a chunk to leave server B and entities from the perceptual sub-
network enter server B, all of the entities in the perceptual subnetwork have
already decayed since the half-life of information in the perceptual subnetwork
is only 200ms. In sum, the expected copying span is 6 characters in the motor
subnetwork plus 1 chunk (4 characters) in the cognitive subnetwork, that is,
10 characters.

For the replacement span, the 6 characters in the motor subnetwork are
distributed in the 5 servers in the motor subnetwork (server W, Y, Z, and two
hand servers) and each server holds or processes 6/5=1.2 characters on av-
erage. Accordingly, the expected number of entities in server Z and 2 hand
servers is 1.2x3=3.6 characters, that is, the expected replacement span is
3.6 characters.
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Appendix 6. Sources of Equations and their Parameters

Table VIII. Equations and Sources of Equations and Parameters

Equations and their Parameters

Sources of Equations and Parameters

Equation (1)

Black 1999; Bullock 1968; Chklovskii et al. 2004

Si (Sojourn time of route i)

Value obtained during the simulation of the model [sum of waiting time
(W;) and processing time (73) of entities, Feyen 2002; Liu et al. 2006]

Equation (2)

Heathcote et al. 2000

A; (the expected minimal processing time (7%) at server i
after intensive practice)

B;(change of expected processing time from the beginning
to the end of practice)

Feyen 2002; Liu et al. 2006

a; (0.001, learning rate of server 1)

Heathcote et al. 2000

N;(10,0000, number of entities processed by server 1)

Nelson-Denny Reading Test used (Salthouse’s study [1984a, 1984b, 1987])

Equations (3-6)

Gross and Harris 1985; Fundamentals of queueing theory

Equations 3—6 are served to prove the change of expected
interkey time and its variation.

Equations (7-11)

Black 1999; Bullock 1968; Chklovskii et al. 2004

Equations 3—11 are served to derive Equation 1.

Equations (12-13)

Definition of units of typing [Salthouse 1986a, 1986b, 1984a, 1984b, 1987]

FP (2, expected position of the fixation point in a word)

Rayner 1998

Xopt (4, optimal chunk size)

Derived based on Equations (22)—-(30) in Appendix

Equation (14)

Welford 1968

Im (26.3, a parameter corresponding to different parts of the
hands)

Langolf et al. 1976

Dis (movement distance)

Standard QWERTY keyboard and averaged anthropometric data of hands
[Armstrong 2004]

S (1.3 cm, size of each key)

Standard QWERTY keyboard

Equation (15)

Gan and Hoffman 1988
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Table VIII. (Continued)

Equations and their Parameters

Sources of Equations and Parameters

a=52.95, b=15.72 constants for the movement composed of
single component of fingers

Gan and Hoffman 1988

Equations (16-18)

Tanaka 1994; Hansen et al. 1953;

Equations 16-18 are used to develop Equations 19-20

Equations (19-20)

Equations (16)—(18)

M (7300 clusters, population size (M) of the brain area
corresponding to each finger)

Reinkensmeyer et al. 2003; Penfield and Rasmussen 1950

RD (17.5 cm, movement radius)

Armstrong 2004

Equation (21)

Drury 1975

S (10 ecm, shoe width), W (10 cm, the pedal width)

Anthropometric data of foot [Armstrong 2004]

A (3 cm, movement distance of foot)

Typical movement distance for a foot pedal. Based a sensitivity analysis,
when A varies from 3-10 cm (maximum of foot movement on a pedal), it
did not affect the simulation results of current task.

Equations (22-24)
See Definition of the parameters in Appendix 4 and their
values are set during the optimization process

Developed based on the nature of the composition of task completion time
and preservation duration of each character at a server (see paragraph right
below those two equations)

Equation (25-34)

Developed based on Equations (22)—(24)
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